הבלוג של ארתיום
בלוג על לינוקס, תוכנה חופשית, מוזיקה, סלסה, ומה לא!
התקדמות חשובה בתמיכה ב־OpenCL ב־pytorch.
רקע
היום pytorch היא אחת התשתיות המובילות בעולם למידה עמוקה. יש לה יתרונות רבות, אבל מבחינת המפתח זה קוד איכותי ותיעוד טוב. הקוד כתוב בצורה מאוד מודרנית עם שימוש נכון ביכולות C++ מה שמאוד מקל על הפיתוח. אני עובד בתקופה האחרונה על פיתוח מנוע עבור pytorch מבוסס OpenCL כחלופה ל־cuda.
כבר כתבתי בעבר על חשיבות התמיכה ב־OpenCL.
אבל בכל זאת אזכיר כמה נקודות מבחינת קהילת תוכנה חופשית וקוד פתוח:
- אנחנו זקוקים בתמיכה חוצת פלטפורמה בכרטיסי מסך מיצרנים שונים כמו AMD, Intel וכמובן nVidia.
- אנחנו זקוקים למימוש האלגוריתמים המרכזיים כקוד פתוח הזמין לכל (ולא כקופסה סגורה ש־nVidia נותנת)
- אנחנו רוצים לעבוד עם סטנדרטים פתוחים וזמינים כמו OpenCL ולא מימושים ספציפיים של יצרן (כמו cuda).
אז מה חדש? קלות אינטגרציה!
עם שחרור גרסה 1.13 של pytorch חל שיפור משמעותי ב־out-of-tree-backend. עכשיו הוספת מנוע אימון מבוסס OpenCL היא פשוטה מאוד ולמעשה שאלה של מספר דקות, אפילו בוונידוס העניין יחסית פשוט. המשמעות שאפשר להשתמש במנוע OpenCL בקלות רבה הן בלינוקס והן בווינדוס.
מה עם הביצועים? אם משווים מול גרסת cuda/cudnn על אותו ה־gpu מדובר בין 50 ל־70 אחוז ביצועי cuda באימון ובין כ־60 ל־80 באבלואציה (תלוי ברשת כמובן).
למרות שהמנוע עדיין ניסיוני וחסרים בו לא מעט פעולות הוא נבדק בהצלחה על עשרות רשתות כמו resnet, mobilenet ורבות אחרות.
המנוע עצמו מבוסס על ספריית dlprimitives שאני מפתח במקביל והיא חלופה ל־cuDNN על בסיס OpenCL וגם מנוע חיזוי שעובד עם מודלים בפורמט ONNX - שזה נושא גדול בפני עצמו.
מה המשמעות של זה?
משתמשי AMD יכולים לאמן רשתות. הם לא מוגבלים למספר מצומצם של דגמים ש־rocm תומך בהם או לשימוש בלינוקס בלבד. התמיכה היא גורפת מ־APUים ישנים כמו Stoney Ridge ועד ל־RDNA 2 וגם זה עובד על "חלונות" למי שמעוניין.
זו הייתה משימה כמעט ובלי אפשרית עד היום. עכשיו זה במרחק מספר פקודות
תשתית אימון היא קוד פתוח לגמרי גם אם עובדים עם nVidia (טוב חוץ מהדרייבר שלהם)
- כל מה שצריך זה דרייברי של OpenCL. לא צריך את כל המפלצת של cuda (מי שיצא לו להתקין לשדרג לגלות בעיות תאימות יבין אותי מידי)
מחפש עזרה...
מישהו יודע איך אפשר לבנות ולפרסם whl לפלטפורמות שונות? רצוי איזה שירות ענן שיעשה זאת? כדי שזה יהיה ממש במרחק של pip install :-)
הוסף תגובה:
חובה לאפשר JavaScript כדי להגיב.